Menu Chiudi

Problema 1 di Hilbert

torna a Problemi di Hilbert

L’ipotesi del continuo afferma che non esiste nessun insieme infinito la cui cardinalità sia compresa strettamente tra quella dell’insieme dei numeri interi e quella dell’insieme dei numeri reali. Kurt Gödel e Paul Cohen hanno dimostrato che l’ipotesi non può essere né dimostrata, né confutata, dagli assiomi ZFC. Non esiste un consenso tra matematici se ciò risolva o meno il problema.

L’insieme dei numeri reali può essere dotato della struttura di insieme ben ordinato? Questa domanda è parzialmente irrisolta, in quanto è correlata all’assioma della scelta di Zermelo-Fraenkel (o all’equivalente lemma di Zorn); nel 1963 si dimostrò che l’assioma della scelta è indipendente da tutti gli altri assiomi nella teoria degli insiemi, cosicché non è possibile basarci su quest’ultimo per risolvere il problema del buon ordinamento dell’insieme dei numeri reali.

Questo sito si avvale di cookie tecnici necessari al funzionamento dello stesso ed utili per le finalità illustrate nella cookie policy. Continuando la navigazione o cliccando su "Accetto" acconsenti all’uso dei cookie. Maggiori informazioni...

Questo sito utilizza i cookie per fornire la migliore esperienza di navigazione possibile. Continuando a utilizzare questo sito senza modificare le impostazioni dei cookie o cliccando su "Accetta" permetti il loro utilizzo.

Chiudi